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Nulling in Lin=ar Array Patterns With
Minimization of Weight Perturbations

1. INTRODUCTION

Adaptive antenna systems presently receive much intcrest and there has been

7 cohsiderable study of adaptive algorithms. Less attention has been devoted to the

end product of the algorithms, which is an antenna pattern with nulls in the direc~
tions of the jammers. In this report we therefore study the general properties of
patterns with null constraints. The hope is that this may contribute to more insight
into the basic behavior and fundamental limitations of adaptive nulling systems and
possibly also suggest new adaptive schemes suitable for large array antennas,

The approach we take is based on a direct synthesis of the array pattern with
the desired nulls, in contrast to an iterative solution using an sdaptive algorithm.
The problem is formulated as an approximation problem: a set of complex array
weights !w a is determincd which, subject to the null constraints, best approxi-
mates a given set of weights Yool * Two types of approximation criteria are
considered: (a) minimum relative weight perturbations; that is,

2
zkwn - 'on”wonl

ZIwn - 'onl 2, min, Criteria related to (b) have been applied hefore, L2 whereas

= mir, and (b) minimum tota} weight perturbations; that is,

(Received for publication 18 Fetruary 1982) -

1. Mayhan, J. (1976) Nulling limitations Tor a multiple-beam antenna, IEEE Trans,
Antennas Proprg. AP -24:769-779.

2, Steyskal, H. (1982)Synthesis of antenna patterns with nulls, IEEE Trans.
Artennas Propag., AP-30,
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the criterion (a) seems to be new, For both cases exact solutions are derived and
interpreted in terms of cancellation beams superimposed on the initial, uncon-
strained pattern. _

We then consider the same synthesis problem under the restriction that the
array excitation is perturbed in phase only. The motivation for this is, of course,
that 1n a phased array the required electronic controls are wvailable at no extra
cost. This subject is of great practical interest, and ~everal publications on it
have appeared in the literature, 39 The associated approximation problein is non~
lihear in general but can be linearized by assuming that the required phase perturba-
tions are small, an asaumpﬂon which is reasonable in certain applicatinns involving
‘null placement in low sidelobe regions, Based on this assumptior we determine a
set of phase perturbetions {¢ } for the rame two criteria as above which now take

the forms (a) minimum phase perturbations: that is, Zo = min,., and (b) miiimum
products of the phasc perturbations with the element 5mplitudes; that is,

Z(lwonl ’n)z = min. This time the solutions cin be interpreted as paire of can-
cellation beams superimposed on the initial pattera.

Following the waalysis of these null synthesis problems we present the results
of com; xations designed to display the basic features of the solutions obtained and
to explore the limitations of the small phase perturbation assumption used to linear-
ize the phase-only null synthesis problem. '

We conclude the report by demonstrating an equivalence between the null
synthesis problem treated in terms of obtaining a best fit tc » given aet of element
weights, and treated in terms of obtaining a best approximation to tne original pattern.
At the same time we also extend the null synthesis problems studied in the first part
of the report by considering a more general minimization criterion that includes the
criteria treated earlier as special cases.

2. ANALYSIS

In the following analysis we consider a linear array of equispaced isotropic
elements (see Figure 1), The spacing between the elements is d and the phase
reference cer‘er is taken to be the center of the array, Lettirg W n= 1,2.004 N,
be the complex weight of the nth array element, the array field patterti. p(u) is
given by k

(Due to the large number of references cited above, they will not be listed hen.
See References, page 67.) ]

ot
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Figure 1. Geometry of
Array

" > SRR SR

N N-i N-2 o

niy--
-Li.

B 7] o

N
. -jd_u
p(u) = Z w, e n
n=1

where

n —r {n - 1), n=1,2, ..., N

and
u=kdsin @

with

k= -zx!
and § the angle measucec from broadside to the array. * Note that the dn are odd
symmetric with respect to the phase reference center; that is,

d=~dy . nsr n=12 ..., N.

The general problem we address here is the following. Suppose w: are given
an umplitude taper 2 , n= 1,2, ..., N, for the element excitations ,'.r example,
for low sidelobes), and a direction ug for the peak of the array pattern (look direction).
Then the array coefficients are .. . e
wOn:anejdnus. n= 1,2 +sss N,
The amplitude distribution is assumed to be symmetrical with nspeét to the array
center. We now wish to alter the element weights 80 as to place nulls in the array
pattern at a set of M prescribed sidelobe locations Y, k=1,2,.., M. What should
the coefficient perturbations be? We consider two principal cases of this problem:
(1) the perturbations are of both amplitude and phase; and (2) the perturbations are
of the phases only.
*In this report, we use the implicit time dependence edwt

11




21 Amplitude and Phase Pocturbations
We begin by considering the case in which both the amplitude and the pnase of
the element weights can be nerturbed from their original valies. The perturbed

coefficients can be repiesented as O

jd_u d u ,
wo=a e n'+a_‘ejns(An+j¢n). o (1)

e

The first term on the right hund side of Eq. (1) is the initial value, w “a’ of the nm

element weight, and the second term is the perturbation of the weight

jdnua ; : )
Aw =a e (Aru+']¢n)‘ oo (@

" The array field pattern is then

N

jd_u jd_u ~jd_u
P(u)-nz:l[ane "s+ane ns(An+j¢n)] e "
N
jd_u -jd_u
'po(u“.nszl a e n s(An+j¢n)e n

where po(u) is the original or unperturbed array patiern. We now wish to deter-
mine the A n and the ®n to place nulls at the M locations Gy k=1,2, .cco M, Or
equivalently to find solutions to thc equation system '

N R .

jdi u jd
Zlan(An+j¢n)c n's, nuk--po(uk). ke 1,2, .oos M. 3
n=

Note that in this equation system there are 2N urknowns and 2M equations
{considering the real and imaginary parts of Eq. (3) separately]. Hence, if the
number, M, of prescribed null locations is less than N, the equatioa system as it

""" stands does not have a uniquely determined solution. Clearly a further requirement

{or requirements) must be imposed on the solution to determine it uniquely.

At this point, motivated by the desire to keep the weig!it perturbations as small
as pussible, two possibilities suggest themselvea. The first is to find the solution
to Eq. (3) which minimizes the sum of the squares of the absolute values of the
weight pertucbations relative to the original weights. )

o 2 3 2 2
PR TIETALED NI
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The second possibility is to find the solution ﬁhich minimizes thé sum of the squares
of the abgolute values of the total weight perturbations

ZN: N
law |2 « a2 2,43,
a= 1 n ngl n%n* o

We now treat each of these two cases in turn. The treatment of both cases is based
on the following result which we state as a theorem:

THEOREM A:

Let A be an m X n complex matcix of rank m, m < n (that is, A has m linearly
independent rows). Then the solution x of the equation system

Ax =y

which minimizes the ncrm of x, ”__:5” = (575)1“. can be
expressed as u linear corabination of the columns of A'. (Here 1 represents the

Hermitian transpose operator,)
PROOF:
The proof is an immediate corollary of the fact that the minimum norm solution
10
is

x=al@ahly,
If we let b be the m X 1 vector (AAT)"!y then
x=alp

- 80 that x is a linear combination of the columns of A' with coefficients from b,
Applying this theorem first to finding the solution of Eq. (3) which minimizes

N 2 2
3 (A, +9,) we let
Ty Rt { N S . . Lo . B —
Xm0+ 500 By+idg cees Ayt )T ' @

% =-[Pglu ) Bolugh ovvs pfuy 0T ®

and

10, Rao, C., and Mitra, S. (1971) Generalized Inverse of Matrices and Its .
Applications, -John Wiley & Sons, New York, p 45. -

13




jd,(u_ - u,) jd (u_ = u.) jd, (u_ ~ u,)
a e 178 1 age 2's 1 c. a3l e N's 1
jdytug = uy) ’
jd. (u_ - u,) jdo(u_ -~ u,) 2 8 s
A= a e 1778 72 ay e s 2N (6)
idy(u - uy)  jdo(u_ = ug,) fjdu, = u,)
ale 1"s M aze 2 8 M oeve ‘Ne N 8 M

e -

80 that the system of Eqs. (3) can be written as Ax = y. It follows from the theorem
that

N .
jd (u_~u) -
E b, 2,€ nm 8 he1,2,.... N {7)
m=1 B

An +ie, =
where the vector of coefficients, b, is given by inverting the equation

aahp = y. ' (8

The elements of the M X M matrix AAt are given by

N ,
jd (u_ - u) “jd (u_~u_)
(M?’kmg Zlane n''s “kane a'Ys " 'm
nl
N .
. a2 e-Jd-n(uk - um)
n=l B
N :(

' 2
= n;l a_ cos [dn(uk- um)], kym= 1,2, ..., M

--——-——"making use of thé odd symmetry of the d h and the assumed even symmetry of the
original distribution of the element weight amplitudes. The elements of AA.t are
thus real. The components of the vector y, the negatives of the unperturbed pattern
values at the prescribed null locations, are likewise real since the unperturbed
pattern is real because of the symmetry of the dn and of the original amplitude
distribution. Hence the coefficients bm. me1,2, ... M, are real and it follows
from Eq. (7) that :

14
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e e et e

AM

. )
A =a T}:,l bm ccs[dn(um - us)]

H

M
ag 21 bm sin[du(um - us)] .

Q
n m=

The An are thus even symmetric ard the °n odd symmetric with respect to n:

that :s,

n= AN-:HX ’
n=1,2, ..., N.

®n = "ON-n+1

The representation of the relative weight perturbation in the form of Eq. (7)
can be given an appealing physical interpretation. Substituting Eq. (7) into Eq. (2)
we obtain
jd_u

M
Aw =32 2; b e B M
n n — m
m=1

and thus
plu) = po(u) + Ap(u)

where
M .
-jd (u-u )
Aplu) = Z b Z a:e n m, (9)
=1 n=1

.

Accordingly the perturbed pattern equals the original pattern plus the sum of M
cancellation beams each corresponding to a taper of the amplitu’e of the element
excitations proportional to the square of the original ampliiude taper and with a
pattern peak in the direction of one of the desired null locations. In the sequel we
will sometimes refer to the cancellation beams corresponding to the amplitude taper
an2 as "tapered cancellation Leams. "
L . N 2. 2 N N

I inctead of minimizing n)-;l (An + ¢n) we minimize n'z-:l !Awn| 2, ngl g:(A:+ ¢:)

(see p. 13), then similarly to Eq. (4} and Eq. (6) we let

15
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=00, (8,419 8308, 4 1e5h vens aylBy s § o7

and
Pejdl(u. -u,) ejdz(u. -u,) . ejd.N(u. . ul)
A ejdllu. - u,) ejdz(u’ - uy) . ede(“' - u,)
S e
thereby obtaining »
a A +j¢ )= m2=:1 b ejd“(um ) u'). n= 1-.2. cees N :

The vector of coefficients, b, is obtained as before by inverting Eq. (8) where the
elements of the matrix AA' are now given by

N
[4aT] = X0 costd (w -u )l km=1,2 ... M.
The coefficients b

n=1

M
1
=a 2 by, sinld, (uy,

km

.m:l.z.....Marengainrealandweobtam

cos[dn(um-us)] S

-u )] .
n m=1 8 -
The weight perturbation takes the form - _ - o h
J4a¥m N
2 M he1,2 ..., N (10)
and the pattern perturbation is
o
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N
-jd_(u - u_)
Ap(u)- z b"‘l E e h m {(11a)
m=1 “ n=1|
M ,
: -u_)2]
. A sin{N(u L
sty Pm ST I (11b)

The berturbed pattern is thus equal to the sum of the original pattern and M cancella-
tion beams each corresponding to a uniform amplitude distribution of the element
excitations and with a peak in the direction of one of the null locations. We will
sometimes refer to such cancellation beams as "uniform cancellation beame ' -~
The representation of the total pattern perturbation as the sum of M cancella-
tion beams corresponding to uniform element amplitudes is ales the fcrm of the
pattern perturbations for a half-wavelength-spacing linear arry obtained by
Steyskal who finds the weights that will give the pattern with nulls at a set of pre-
scribed tocations which differs as little as possible in the mean asquare sense from
the original pattern. In Appendix A we give an alternate derivation of this result
as a special case of the solution to the minimum pattern perturbation problem for a
linear array with arbitrary uniform element spacing. Thus the solution to the prob-
lem of placing nulls at a prescribed set of locations which minimizes the s 1m of
th; squares of tge absolute values of the total weight perturhations
¥ |Awn| 2, P a: (A2 + ¢:) is also the solution that minimizes the mean

n=1 =
square difference between the original field pattern and the perturbed field pattern.

In low sidelobe applications we can anticipate that the minimum (in either of the
two cases we have treated above) weight perturbations required to place nulls at a
se! of sidelobe locations will be small. Starting with the expression for the n

perturbed weight

jdnuu
wn-ane (1+An+j¢n)

-1] ®
12 dtan ('iTnA:)

jd_u 2 2
=a e n'[(1~»An) +¢n] e
we can then expand
1/2 1 ® 2
[(I+A) +¢ ] = (1+An) [l+-’ (TTnA—) *eee

..1( $ )
tan 13&n =¢n-¢nAn+...

17
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and retain only the linear terms thus obtainlng
14§ '
n's ''n

w. s, (§1 +An) e

Hence for small A o e A is the relative change in the amputude and ¢ is the
phase perturbation of the nth weight.

22 Plun-OnlyMurbdiom

We now turn our aitention to the case in which phase perturbations only are
allowed in the element weights. The amplitudes of the elemant excitations are fixed
at their original values. The phase-only analysis parallels that performed above in
which both amplitude and phase were allowed to vary from their initial values.

The perturbed coefficients are represented by

jd u, 39,

wa=a,e h's, ' {12a)

jd_u jd u_
=a e +a e ns (e ’“-1). n=1,2 ..., N. "~ (12p)

We assume that the phase perturbations are small (for example, for applications to
null synthesis in low sidelobe array patterns), Then

e”n -1 F TR (13)

and

d d u .
wn-anej""-bjan%ej"'. - (14)

The array pattern is giver by

N

jd_ v -jd u

plu) = p (u) + § 21 “, ¥, € nse,"'n
n.

and the equation system for the nulls is
N
nz-:l a,9,sin [dn(uk - u’)] - - po(uk) {15a)
k=12, ..., M. ‘
N
2 e ¢ cos(d (u -u)j=0 _ (15b)

n=1
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This equation system haa 2M equations for N unknowns and hence, as in the case of
perturbations of both amplitude and phase, a unique solution to tiie system of equa-
tions can be obtained only if a further requirement is imposed on the solution. (it
is assumed of cource that the number of unknown phase perturbations is greater
than twice the number of null locations.) As above we treat two crees, the first
here corresponding to the requirement that the solution minimize the sum of the

. N . .
squares of the phase perturbations, E Q: {or equivalently, minimize the sum of
n=l

the absolute values of the weight perturbations relative to the original weights), and
the second to the requirement that the solution minimize u&e sum of the squares '

of the absolute values of the total weight perturbations, Y @, Qn)z.
: 1

n=
Consider first minimizing the sum of the squares of the phase perturbations.

We write the system of Eqs. (15) in the form

Ax = y | : (18)
where {

CLN U VR L (17)
|
"ul sin(d, (u, - u.i] s, sin(d,(u, ~u)) ... aysin{dy(u, - u.)]-
8 lln[dl (u, - u.)E] a, sind, (u, ~ u.)! ces By -m[dh,(u2 - u)]

a, sin (dl("M - u.:)] ' 8, -m(dz (uy, - u.)] cee By li.u[dN(\lM - u.)ﬂ

(18)

and y is given by Eq. {§). Using Theorem A we then obtain the representation of the
phase perturbation as :

M
TN u§1 by, sin(d (u - u)]. (19)

The vector of coefficients, b, is obtained by inverting the equation
T :
.(AA ) bey (20)

19
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with the el=inents of the matrix AAT given by

N : :
[MT] - z .: sin(d (4 - u)] sin{d (u -u)l. : (21
: km

n=1

It follows from Eq. (19), because of the even symmetry of the amplitudes a, :
assumed throughout and the odd symmetry of the d x that the ¢ are odd symmetric

with respect to the phase reference center~ that ls.

%™ "% -n+yt’ P="L2 ..., N,

This means that Eq. (15b) is automatically satisfied by the solution obtained to
Eq. (15a). )

It is important to note that the values of ¢, calculated from Eq. (19) must be
substituted in Eq. (12a) or Eq. (12b) to obtain the perturbed weights, Since the
values for the ¢, were obtained using the approximation (14), for the weights,
this means that the resulting pattern nulls cannot be expected to be theoretically
perfect as they would be if the calculated values of 9, Were substituted tn approxi-
mation (14).

The approximated form (14) {s useful, however, for ubtaining a physical inter-
pretatica of the phase-only perturbation solution., Substituting Eq. (19) in (14) we
obtain the approximate weight perturbation

Awn - w e, ejdnu'

jd u

njacpe

The value of the perturbed pattern at a prescribed null location u, is in fact given by

-

Z‘,b

mw= ] ﬂl

% 'ci.n d, ¢

U, u‘)]

M

Yo

m= ]

al®

jd_u

n m

jdn(z u, - um)]

N N 2
je ] -jd W ¢ -jd w,
nz.:x'n[e Peage)fe T “am e e

with the value of the power pattern at the location given approximately by

2? Z‘amn

nx]

2

i, - dp )y .
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ard the corresponding pattern perturbation

M N a2 ~jd (u ~wu ) -jd_{u - { 2u_~-u ]
Ap(u):mZ::,lbm n2=:1""n'[e n m o Le “< { s “‘}) (2?)

The perturbed pattern is thus approximately equal to the sum of the original pattern
and the sum of the differences of M pairs of canceilation beams. Each of these pairs
of beams corresponds to an element amplitude Laper proportional to the square of
the original amplitude taper, with one member of the pair having a peak in the
direction of a null location and the other member of the beam pair baving a peak in
the symmetric direction on the other side of the original pattern look diiection, ug.
[Note that 2 g tu ru - 2 (um - us).] Tiwus the placing of nulls in the prescribed
locations is accompanied by a doubling of the pattern at symmetric locations on the

other side of the look direction.
The requirement of minimizing the sum of the aquares of the absolute values of

N

the total weight perturbations 2 (a n ¢n)2. (sce p. 19) leads, similarly to Fq. (17)
n=z}

and Eq. (18), first to expressing the system of Fis. (15a) in the form of Eq. (18}

where now

R O T R Wk

and
[ sin(d, (u; - u)] sin{d,(u; ~u)] ... sin{dylu, - u.)]'
sin(d, (u, = u,)} sin(dy(uy ~u )l .- sin(d (uy =)
A= . . . s .

| ﬂn(dl(uM -u)} sin{d, (u,, - u')] ces nln[etN(uM - u.)!*
Hence, similarly to Eq. (19,,
M .
“ 4, - 2 b siafd (u_ -u)] (23)

m=1

with the vector of coefficients, b, obtained by ‘nverting Eq. (20) with
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N
[AAT]km . Z lin[dn(uk -u.)] lin(dn(um -u.)] .

n=1

The weight perturbation is then approximated by

M
jd u jd_(2u_-u )]
1 E nm n s m
Aw, * 7 = bm[e -e

|
and the corresponding pattern perturbation by

M ‘
™ b -jd (u-u_) -jd_(u - {2u_-u_})
Apw) = 3, - [ej ™ "Ym -‘ej o { s m}] (24a)
ms1
] M by, | sin[Nu-y /2] sin[N(- {2\1 -u 245
. m=1 z sinflu=uy, i<l sin[(u - { 8 )/a

Minimizing the squares of the total weight perturbations thus leads to a result
"similar to that for minimizing the squares of the phase perturbations (relative
weight perturbations). The perturbing or sidelobe cancelling pattern is again
upproximated by the sum of the differences of M pairs of beams, each of which
corresponds here to a uniform amplitude distribution of the element weights. Equa-
tion (23) shows that the phase perturbations are inversely proportional to tle ampli-
tudes of the weights, whereas for the minimum -phase -perturbation sotution,
Eq. (19), the phase perturbations are directly proportional to the weight amplitudes,
It is also simple to show (see Appendix A) that for half-wavelength element spacing,
the pattern given by the approximation (24) which corresponds to minimizing
the approximate total weight perturbations, is also the patiern that differs least from
the original pattern in a mean square sense, while having nulls at the desired loca-
tiona obtained with small phase-only perturbations,
It is instructive to compare the approximate (for small phase-only perturbations)
representations of the pattern perturbations obtained here, (22) and (24), with
the representations in Eqs. (8) and (11), obtained earlier when both the amptlitude
and phase of the weighta are allowed to vary, Minimizing the sum of the squares of
the absolute values of the relative (to the original amplitude weight) perturbations

(ej ’n -1 j’n for phase-only perturbations and An + j’n for combined amplitude
and phase perturbations) leads to a representation of the cancellation pattern in
terms of beams corresponding to an element amplitude taper proportional to the
square of the original amplitudes; whereas minimizing the sum of the squares of

ju,

Wn_ l)-jane R

ju
the absolute values of the total weight perturbations (un e B(e

ju
ae s (& at j¢n). respectively) leads to 2 rupresentation of the cancellation pattern

22




in terms of beams corresponding to a uniform amplitude distribution. Phase-only
perturbations require two beams fcr each desired null, one pointing in the direction
of the null and the other, of opposite sign, in the symmetric direction on the oppoaite
side of the original main beam axis, with the result that the placement of the nulls is
achieved at the expense of doubling the sidelobe levels at the symmetric locations.
When both amplitude and phase are allowed to vary, there is only one beam for each
null pointing in the direction of the null location. For half-wavelength element
spacing, the patterns corresponding to minimizing the sum of the squares of the
total weight perturbations are also the patterns that differ least in the men square.
sense from the original patterns. Because of the small phase approximation (13)
employed in the phase-only analysis, the resulting pattern nulls are not perfect,
whereas the patterns achieved with both amplitude and phase control have theoretic-
ally perfect nulls at the desired locations.

Before discussing numerical results, it is worthwhile to introduce » useful
normalization of the beam coefficients. Consider first Eqs. (9) and (11) obtained
for the perturbing or sidelobe cancelling pattern Ap(u) when both the amplitude and
the phase of the weights are allowed to vary from their original values. For simpli-
city suppose there is only one null location (that is, M=1). Then Eq. (9) gives for
minimum squared relative weight perturbations, .

N

Poluy)= aptay) = by X o}

80 that
b, = - Py (4y) '
1
2 a3
n=1 "

whereas Eq. (11) gives, for minimum squared total weight perturbations,
Py (u) = ap(u;) = Nb, ' \\

or

The beam coefficients in the two cases can have widely differing values depending
on the amplitude taper, a . and the number of zlements in the arruy, N, If simul-
taneous nulls at multiple locations are desired, then the deviations of the values of
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the beam coefficients frbm tneir values obtained for the same null locutions taken
one at a time give a measure of the extent of coupling or interference between the
component beams of the perturbing pattern. For ease in dcacribing the extent of

coupling between component beams as well as for comparing differences in coupling
corresponding to different types of beams, it is desirabie to normalize the beam
coefficients so that their value equals the negative of the imperturbed pattern value

at the null location when there is only one null location.

This is equivalent to re-

quiring that each component beam of the cancelling pattern have a magnitude of
uniiy in the peak of direction of the beam. It followr *hat the beam coefficients for

"tapered cancellation beams' she ild be multiplied by

a:. and the beam coetfl-
1

cients for "uniform cancellation beams" should be multiplied hy N. The two cases

can be given a uniform representation as follows., Let

a. tapered cancellation beams

1, uniform cancellation beams

and

(25)

(26)

Then the equation system for the normalized beam coeffigients, bm’ is [see Eq. (8)]

wahyp' = y

where

N
[AAY] = Z tn Coﬂldn(uk’ Lm"n kom- lpzn seey M.

km n=1 i

The n'? weight per*urbation 18 given bj\r

N |
jd_u
Aw =t z:b' e ¥ M
n n &4 m

and the cancellation pattern by
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M N .
-jd (u~wu_)
apw) = b Xt D m’
m=1 ™ = .

The real and imaginary parts of the relative weight perturbations are given re-
spectively by :

1
b, cos (dn(um - us)]

A =
n

::wli"
M=

n
[

m

Ms=

b;n sin [6n (u -yl

9, =

::.m |=
1]
—

m

The normalization for phase-only control is entirely similar., With tn defined
by Eq. (26), the equation system for the normalized beam coefficients is (cf. Eq. (20)]

aah)p = y
where
T N
[AA ]km . nz=:i 2t sin(d (u - u )} sinjd (s -u)].

The phase perturtations are

t M
n ]
= 23; mgl by, sin(d, (v, - u)].

The perturbation of the nth weight can be represented approximately by

M '
' ’dn ¥m jdn(2 Ug © um)]
Awn - tn mgl bm [e -e

and the cancellation pattern approximated by

M N
Apwl e X b 2ot [e-jd“(u-um) -e-jd"(u‘ 2% )]
m=1 Mp=) P

8. NUMERICAL RESULTS AND DISCUSSIONS

In this section we present and discuss the results of computations performed to
display the basic features of the solutions obtained in the previous section. All
computations were dons for an array with 41 isotropic elements with half wavelength




spacing. Unless otherwise stated, the original or unperturbed patiern correspcnds
to a 40 dB Chebyshev taper of the element excitations. 1

We begin by discusaing the simplest case—that of imposing a single null in the
pattern. A location of § = 15.23° was chosen corresponding to the approximate
location of the heak of the fifth sidelobe of the unperturbed pattern. Figures 2a-2c
and 3a-3c show the patterns corresponding to perturbations of both the amplitudes
and phases of the element weights minimizing the relative weight perturbations

E (|Aw l /a ) [Eq. (9)] and the absolute weight perturbations, 2 IAw |2

?Eq. (11)], respectively. For each of these two cuses ..e show thl:'ee graphs. the
first with the perturbed pattern for § from -90* to 90°, the second with the can-
cellation pattern from -90° to 90°, and the third with both the original and the per-
turbed patterns in the range from 0° to 25°,

We see that the cancellation beam in Figure 2b for minimized relative welght
perturbations, which corresponds to a taper of the element excitations equal to
the square of the original amplitude taper, has a much broader mainlobe and much
lower sidelobes than the cancella:ion beam in Figure 3b which corresponds to a
uniform distribution of the element amplitudes., This means that the original patt: m
is distorted more strongly in the vicinity of the null for minimized reiative weigtt
perturbations than it is for minimized total weight perturbations, and conversely -
that the original pattern is distorted less strongly far away from the null for the
minimized relative weight pertuibations than it is for minimized total weight per -
turbations. (In a mean square sense, as is demonstrated in Appendix A, the dis -
tortion of the original pattern is minimized by the minimized total weight perturba-
tion scheme.) Note that the broad mainlobe of the cancellation pattern in Figure 2b,
being out of phase with the fifth sidelobe of the original pattern, is in phase with the
fourth and sixth sidelobes of the origiral pattern with the result that these sidelobe
levels are raised (see Figures 2a, 2c). Indeed the effect of the mainlobe of this
cancellation pattern extends even to the third and seventh sidelobes of the original
pattern which, being out of phase with the mainlobe of the cancellation pattern, are B
lowered slightly from their original values. By the time the second or eighth side-
lobes are reached, however, the effect of the cancellation pattern of Figure 2b is no
longer felt and the perturbed and original patterns are virtually indistinguishable.
In contrast, the cancellation beam of Figure 3b, which tapers much more slowly than
does the cancellation beam of Figure 2b, can be seen by referring to Figure 3c to
have a small effect as far as the first sidelobe of the original pattern.

11, Drane, C., Jr, (1964) Dolph-Chebyshev excitation coefficient appro..imation
IEEE Trans. Antennas Propag., AP-12:781-782, )
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Figures 4a-4c and 5a-5c show patterns for a singie imposed nvll at 15,23°

corresponding to perturbations of only the phases of the element weights, Fig-

ures 4s-4c show the results when the sum of the squares of the phase perturbations,
N

Z ¢§ is minimized, [Eq. (22)], and Figures 5a-5c how the results when

n=1

N
z (a‘_l ¢n)2 is minimized [Eq. (24)]. The principal change in these patterns from
n=1

those in Figures 2a-2¢ and 3a-3c corresponding to perturbations of both the ampli-
tudes and the phases of the Weights is that now the cancellation pattern is the supei-
position of two beams, one with a peak in the direction of the nill, and th2 other with
a peak of opposite phase in the symmetric direction on the other side of broadside.
Hence any change in the pattern on the null side of broadside (§ > 0} is accompanied
‘by an equal and opposite change on the other side of broadside (9 < 0). Note es-
pecially that the sidelobe peak at -15.23° in Figures 4a and 5a is raised 6 dB. This
is necause the cancellation pattern to produce a null at +15. 23° must nave a magni~
tude equal to, and a phase opposite, that of the original patte:n at 15.23° and hence
adds in phase to the original pattern (which is symmetric around § = 0) at -15, 23°
doubling its magnitude there.

The cancellation pattern of Figure 4b is the superposition of two beams of the
form of Figure 2b (that is, beams corresponding to an element amplitude taper
equal to the square of the original taper), whiie the cancellation pattern of Figure 5b
is the superposition of two beams of the fcrm of Figure 3b (that is, beams corres-
ponding to a uniform element amplitude distribution). On the null side of broadside,
6 > 0, the phase-only cancellation patterns are dominatzd by exactly the same beams
that are used for cancellation in the corresponding patterns when both amplitudes
and phases of the element excitations vary. Hence the basi~ features of the phase~
only patterns for positive 4 are the samne as those noted abuve for combined ampli-
tude and phase perturbations, Figures 4a-4c being similar to Figures 2a-Zc and
Figures 5a-5c¢ being similar to Figures 3a-3c.

In Table 1 we have tabulated the values of the beam coefficients, and the values
of the original and perturbed patterns at the null positions for this and cucceeding
cases. For one null at 15. 23° and perturbations of both amplitudes and phase, it
will be noted that the value of the beam coefficient equals the negative of the original
psttern at the null position. This is a consequence of the normalization of the can-
celling beams discussed at the end of the previous section. For nhase-only perturba-
tions, the beam coefficient correspending to the minimization of the sum of the
squares of the phase perturbations aga/n equals the negative of the original pattern,

but the beam coefliclenf correspondi.g to the minimization of Z (an ¢n)2 ia slightly
=1

larger. This deviation of the latter beam coefficient i8 a consequence of the fact
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that for phase-only perturbations and one impoged null, che beam directed at the
rull position must not only cancel the original pattera there but must also cancel
the sidelobe ol the beam directed at the symmetrical position on the cther side
of broadside, Since the sidelobes of the teams used for cancellation when

ngl ¢§ is minimizedtaper off considerably more gnickly than the sidelobes of the beams
used for cancellation when §1(an¢n)2 is minimized (compare Figures 2b with
Figure 3b), the effect of thfgl sidelobe of the beam directed at the gymmetrical posi-
tion of the null is more strongly felt in the latter case than it is in the former.,

Note also that the depth of the nulls achieved when both the amplitudes end
phases of the element coefficients are allowed to vary are considerably deeper than
the null depths when only the phases are allowed to vary. This is a consequence of
tre small angle approximation (13) discussed in the previous section, used to linear-
ize the phase-only nulling problem. The phase perturbations obtained by solving the
linearized nulling problem do not give exact nulls when suvstituted back into the
element weights. However, the amaller the phase perturbations, the better the
approximation is. This explains why the null depth achieved when the sum of the
squares of the phase perturbations is minimized is deeper than the nuil obtained
when the weighted sum ZN: (an¢n)2 is minimized—the phase perturbations in the

n=1
former case are in a least squares sense smaller than those in the latter case.

Following this discussion of imposing a single null, we now look at the case of
two nulls imposed symmetrically at the -3 dB points of a sidelobe, Locations of
0 = 14.54° and 15. 94° were chosen corresponding to the -3 dB points of the fifth
sidelobe of the unperturbed pattern. Figures 6a-6c and 7a~7c¢ show the pattern
corresponds to the perturbations of both the amplitudes and phases of the element
excitations that minimize the sum of the squares of the relative weight perturbations
and of the total weight perturbations respectively. Since the points at which the nulls
are imposed belorg to the same sidelobe and are approximately symmetricel with
respect to the sidelobe maximum, the beam coefficients are approximately equal
(see Table 1). The beams appear to add constructively over most of their range to
form what has very much the appearance of a single beam (compare Figures 6b and
7b to Figures 2b and 3b respectively). The qualitative features of the patterns
shown in Figures 6a-6c and 7a-7c¢ are entirely similar to those of Figures 2a-2¢
and 3a-3c respectively.
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Figures 8a-8c and 9a~-9¢c show the patterns obtained for the cases of the same
two null locations at the -3 ¢B points of the fifth sidelobe when only periurbations
of the element phases are allowed. Figures Ba-8c correspond to the min’mization
of the sum of the squares of the phase perturbations, and Figures 9a-8c¢ to the

N
minimization of ¥ (an Qn)z. Referring to the cancellation patterns shown in
n=1

Figures 8b and 9b and comparing these with the cancellation patterns ir Figures 4b
and 5b respectively, we see that the two pairs of beams composing the phase-only
cancellation patterns appear to add constructively to form one resultant bram pair.
The qualitative features of the patterns shown in Figures 8a-8c and 9a-9¢ are thus
the same as those noted above in the case of only one constrained null for Figures
4a-4c and 5a-Sc respectively. .

Referring to Table 1 we note that, unlike the case of one null, the beam coeffi-
cients for all four minimization types are considerably amaller than the corres-
ponaing values of the magnitude of the original pattern at the null locations. This
of course is the result of the fact that the cancellation of the original pattern at the
null locations is effected by the peak of the cancelling beam directed at one null
position along w.th the mainlobe of the cancelling beam directed at the other null
position so that the two beamI: help one another. This also explains why the beam
coefficients obtained when nzl (|Awn| /an)z is minimized are smaller than those

=

N
obtained whea 3, |aw_ | ? {s minimized, The mainlobe of the cancellation beams

n=1
in the former case falls off considerably more slowly than does the mainlobe in the

latter case (compare Figure 2b with Figure 30) and so the peak of the beam directed
at one null position can get more assistance in cancelling the original pattern from
the mainlobe of the beam directed at the other nuil position. Some of the same
features noted above for the case of one null are seen here as well, Combined ampli-
tude and phase perturb;tlons give deeper nulls than do phase perturbations alone,

and minimization of 2 ¢: gives deeper nulls than does the minimization of
N )2 n=1

ngl (a 0%

We next examine the case of two nulls imposed symmetrically on either side of
a null of the original pattern. Locations of ¢ = 15,95° and 17, 36° were chosen
symmetrically placed on either side of the null between the fifth and sixth sidelobes
of the original pattern and spaced apart the same distance (measured by sin 8 ) as
the two nulls in the preceding case, Figures 10a-10c and 11a-11c show the patterns
corresponding to the perturbations of both the amplitudes and phases of the element
excitations that minimize respectively the sum of the squares of the relative weight
and the total weight perturbations. Since the points at which the nulls are imposed

e




belong to adjécent and almost equal sidelobes, and are approximately symmetrical
with respect to the null between the sidelobes, the beam coefficients are approxi-
mately equal in magnitude but opposite in sign (see Table 1). Unlike the previous
case where the mainlobes of the two component beams of the canc~llation pattern
added in phase to form a single mainlobe, here the cancellation pattern in the vicinity
of the null positions is split into two lobes of opposite sign. The fact that the beam
coefficients are of opposite sign means that each of the beams must uo a consider-

~ able amount of work, as it were, to caucel the effect of the other beam, instead of
being helped by the other beam as in the previous case, As a result, unlike the pre-
vious case, the beam coefficients are considerably larger in magnitude than the
values of the original pattern at the null locations (see Table 1). This is especially
the case for the beam coefficients corresponding to minimization of the relative
weight perturbations which are almost nine times the magnitude of the original
pattern values and three times as large as the beam coefficients corresponding to
minimization of the total weight perturbations. The reason why the minimum rela-
tive perturbation beam coefficients are 8o much larger than the minimum total
weight perturbation beam coefficients is that the taper of the mainlobe of the can-
celling beams i{s much more gradual in the former case than in the lztter, Hence
each of the minimum relative weight perturbation beams must do correspondingly
more work to cancel the mainlobe component of the other beam than {s the case for
the minimum total weight perturbation beams.

Note that even though the original pattern at the null locations is approximately

. N
~43 dB, the cancellation pattern corresponding to minimization of z (l Aw n' lmu)2
n=s1

rises to approximately ~35 dB cn either side of the pair of null locations, and the
perturbed pattern rises to -32 dB. The location of the peaks of the cancellation
pattern away from the pair of null locations (and the positions of the peaks of the
‘component beams) may be explained as follows. Startiag at, say, the left null posi-
tion § = 15.95° and moving to the left, the magnitude of both component beams de-
creases, but the magnitude nf the beam pointed at § = 15, 95° decreases much less
rapidly at first than does the magnitude of the beam pointed at § = 17,36°., Hence,
the two beams being of opposite sign, the net effect is an increase in the cancellation
pattern. A similar but less marked behavior i8 also seen in the case of minimiza-
tion of the total weight perturbations (compare Figures 112 and 11c with Figures

10a and 10c respectively). The perturbation of the original pattern in the vicinity

of the null positions is considerably more pronounced for minimization of the rela-
tive weight perturbations than it is for minimization of the total weight perturbations
because the component beams of the cancellation pattern are much broader in the
former case than in the latter (compare Figure 2b with Figure 3b).
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An additional consequence of the fact that the beam coefficients are much larger '

in magnitude than in the previous case of nulls on either side of a sidelobe maxi-
mum is that the cancellation patterns display considerably higher sidelobes than in
the previous cuse (compare Figures 10b and 11b with Figures 6b and 7b respectively).
The more gradual decreage of the sidelobes of the cancellation pattern i8 especially
noticeable for the minimization of the total weight perturbations (compare Figure 11b
with Figure 7%) so that the effect on the perturbed pattern is seen consniderably
further away from the null positions in this case than it is in the previous case oz

two nulls imposed symmetrically with respect to a sidelobe maxir:um (compare
Figure 11c with Figure 7c).

Figures 12a-12c and 13a-13c show patterns obtained for the same two null loca-
tions, imposed symmetrically with respect to a null of the original pattern, when
only the phases of the element weights are allowed to be perturbed. Figures 12a-12c
correspond to minimizing the sum of the squares of the phase perturbations, and

Figures 13a-13c to the minimization of E (an ¢n)2. The qualitative features of
n=1

these patterns for @ > 0 are very similar to those discussed above for combined
amplitude and phase perturbations, Figures 12a-12c corresponding to Figures
10a-10c, and Figures 13a-13c to Figures 1la-11c. For 8 < 0, of course, the
phase-only perturbation patterns are dominated by the pair of beams which are
directed toward the symmetric positions of the null locations, and which have signs
opposite to the corresponding cancellation beams directed at the null locations
themselves.

Finally we examine the case of two nulls imposed asymmetrically within a side-
lobe. Locations of 8 = 15.23® and 15. 94° were chosen corresponding respectively
to the peak and right 3 dB point of the fifth sidelobe of the unperturbed pattern.
Figures 14a-14c and 15a-15¢ show the patterns for combined amplitude and phase
perturbations that minimize respectively the relative and total weight perturbatiuns,
In contrast to the case of two nulls imposed symmetrically with respect to a sidelobe
maximum, here the mainlobe of the cancellation pattern for minimized relative
weight perturbations is seen to be split into two lobes (compare Figure 14b with
Figure 6b). Referring {o Table 1 we see that the coefficients of the two beams com~
posing the cancellation pattern are of opposite sign and have magnitudes more than
five times larger than the corresponding unperturbed pattern values, indicating that
the two beains are doing considerable work in cancelling the effect of each other in
addition to cancelling the original pattern. This behavior of the cancellation pattern
may be explained qualitatively as follows. The mainlobe of the beam directed at
the location of the sidelobe peak at 15.23° i8 much broader than the sidelobe of the
original pattern and hence tapers off much more gradually than does the unperturbed
sidelobe. Hence, if the beam directed at 15. 23 was exactly matched in magnitude
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to the originsl pattern there it would have a component considerably larger in mag-

nitude than the value of the unperturbed pattern at 15.84°., To counter this unwant:d

"overshoot", as it were, of the beam directed at 15.23°, the beam directed at
15. 84° must be of opposite sign. The component at 15. 23° of the mainlobe of the

beam directed at 15.94° in turn requires cancellation by the peak of the beam dir-
ected at 15, 23° which forces the magnitude of the latter beam to exceed the magni-

tude of the original pattern at 15. 23°,
A similar but less pronounced behavior of the cancellation pattern occurs for

minimized total weight perturbations (compare Figure 15b with Figure 7b). The
mainlobe of the beam directed at 15. 23° in thias case, being less wide than the main-

lobe of the minimized relative weight perturbation beam but stfll twice as wide as
the sidelobe of the original pattern, has a smaller "overshoot" at 15.84° requiring

correspondingly less compensation by the beam directed at 15, 94°.
Figures 1€a-16c and 17a-17c show the patterns obtained for the case of the same

two null locations at 15. 23° and 15. 94° when only the phases of the weights are
N

n=1
The behavior of these patterns

allowed to vary. Figures 16a-16c correspond to minimization of z $n and

Figures 17a-17c to the minimization of 2 @, ¢, )2,

for 6 > 0 is similar to that of the corresponding combined amputude and phase
perturbation patterns.

Following this discussion of the basic characteristics of nulilng at selected
points, we now discuss a set of computations performed to investigate cancellation
in a given sector of a pattern. We deﬁne the power cancellation ratio in the inter-

valAOlOl 09,

2
max [p(O)
Ca [ 1¥-Y ]
max (0)]
Aa[p°

where p, (0) is the original pattera and p(0) is the perturbed pattern.
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The procedure used to study the behavior of the cancellation ratio for the four
types of weight perturbations was as follows. Starting with the 41-element, 40 dB
Chebyshev taper pattern, the left hand boundary of the sector of interest, @ e Ves
fixed at the peak of the fifth sidelobe at § = 15, 23°. A second location 02. was
then found such that the cancellation ratio in the interval (15, 23°, 02] was 30 dB
when a null was imposed at 15.23° and 6 2 using combined amplitude and phase

perturbations and requiring 3, |aw_|? to be minimized. This gave 6, = 15.78°.
n=1 .

The cancellation ratio for all four types of weight perturbations in the sector
{15, 23¢, 15.78¢) with nulla placed at 15.23° and 15, 78° was then aetermined. Next
the sector was enlarged to the right by adding a length (measured by sin ) equal
to sin (15.78°) - sin (15, 23°) giving 92 = 16,33°. The canccllation ratio in the
sector [15.23°, 16.33*]) was then calculated for all four types of perturbations with
nulls constrained to lie at 15.23*, 15, 78*, and 16, 33°, The procedure was then
continued 1 the same way by adding equispaced nulls, The cance'lation ratios ob-
tained are shown in Table 2, Table 3 shows the values of beam coefficients and null
depths for these cases,

Referring to Tuble 2, we see that the cancellation ratios obtained with the two
types of combined amplitude and phase perturbations decrease steadily as the number
of nulls increases lndlcaung more effective cancellation. Slightly lower ratios are

N
obtained by minimizing 2 |aw, |2 than by minimizing 3. (law_|/a )?. Tne

n=

hnprovement (that is, decrease) of the cancellation ratio with the increase in number
of nulls muay be explained by noting that in requiring nulls to be placed at various
locations we are, equivalently, requiring the cancellation pattern to exactly match

the original pattern at these locations. As the number of points at which the cancella-’
tion pattern is matched to the original pattern increases, the better is the overall

fit of the cancellation pattern to the original pattern and hence the cancellation ratio
decreases, Indeed, in the limit of using all the degrees of freedom et our disposal

by imposing nulls at N locations, the cancellation pattern will exactly match the
original pattern everywhere and hence the cancellation ratio will be minus infinity.

The slightly lower ‘#ancellation ratios obtained by mlnlmizing 2 lAw 12 a& com-
N
pared with those obtained Oy minimizing z (IAw ] /a ) is consistent with what we

have observed above in our examination of the patterns corresponding to nulling at
one or two selected points, The cancellation beams used when the relative weight
perturbations are mi@mlzed have a much broader mainlobe than those used when
the total weight perturbations are minimized, and hence are more likely to resuit
in higher perturbed p \ttem sidelobe values in between the null locations.
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The behavior of the cancellation ratios obtained for the two types of phase-only
perturbations is in marked contrast to the behavior of the cancellation ratios for
the two types of combined amplitude and phase perturbations. The cancellation

N

ratios obtained by minimizing E ¢ increase as the number of null locatxons in-
creases beyond three, and thoae obtai.ned by minimizing Z (a ?n ) lncreaae as

the number of null locations inicreases beyond two. For si.x null locations there is
virtually no effective cancellation by either scheme of phase-only perturbations.

In general the cancellation ratios obtained by minimizing the sum of the squares of
the phase perturbations themselves are lower than those obtained by minimizing

the sum of the squares of the weighted phase perturbations. The reason for the
much poorer cancellation obtained with the phise-only perturb-i¢- ; schemes as
compared with the combined amplitude and phase perturbatiou schemes is the small
angle approximation used to linearize the phase-only nulling problem. As the number
of imposed nulls increases and coupling between the component beams of the phase-
only cancellation patterns increases, the beam coefficients become larger and larger
in magnitude (see Table 3) and consequently the phase perturbations increase in
magnitude. For example, for two nulls at 15. 23° and 15.78°, the largest phase

perturbations obtained by minimizir, Z ¢ and 7‘ CH )2 are 1.55° and 5.47°
=1

respectively. In contrast, for six nulls the largest phase perturbatlon is 42.7° and
N
18 phase perturbatlone are greater than 10° for minimizing Z ¢ whlle for mini-

mizing 2 (a ¢ ) the largest phase perturbation is 65°¢ and 10 phase perturba-
n=1
tions are greater than 10*. The larger the phase perturbations, the worse the small

angle approximation. Hence the null depth achieved degrades (see Table 3) and
consequently the overall sector cancellation is less effective. The fact that the
small angle approximation becomes less valid as the phage perturbations grow, also
explains why somewhat better cancellstion ratios are obtained by minimizing

N N

E ¢2 than by minimizing 2 (a ¢ )2. The phase perturbations obtained with the

n=l
former scheme are, in a xnean squares sense, lower than those obtalned with the

latter scheme and so satisfy the small angle approximation better.

4. GENERALIZATIONS

In Section 2 we saw that the process of determining weight perturbations lo -
place nulls at a set of specified locations led to a representation of the cancellation
pattern in terms of beams. Minimization of the sum of the squares of the weight
perturbations relative to the origina! weights led to a representation of the
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cancellation pattern in terms of beams corresponding to an element amplitude taper
equal to the square of the original taper, while minimization of the sum of the
squares of the total weight perturbations led to a representation in terms of beams

corresponding to a uniform amplitude taper. We also saw that the latter minimiza-
tion problem is equivalent to minimizing the mean square difference of the can-
cellation pattern ove= a full period of the variable u= kdsin(6). R is natural to
inquire whether there is a minimization of some property of the cancellation pattern
that corresponds to the minimization of the sum of the squares of the relative weight
perturbations. The object of this section is to answer this question and in 80 doing

to generalize some of the results obtained in Section 2.
We begin by returning to the problem addressed in Section 2 of determlning

combined amplitude and phase perturbations to place nulls at specified locations in
a given pattern. Noting the general relation between the weights, o of the
elements of an equispaced linear array and the pattern, p{u) of the array

N
2w 2=t
=1 n v

L4 .
tpw!? du, . (21

where
N
-jd_u
p(u) = Z w, e o,
n=1

N-1
d, = —9g— = (n-1)

and
u= kdsin §

it follows that the sum of the squares of the total perturbations Aw equals the mean
of the squared cancellation pattern, Ap(u) = p(u) - Py (u); that 19. ;_ B

2: |Aw|’ = f Ip(u)-p(u)|2du. (28)

T

Hence minimizing the sum of the squares of the total weight perturbatioml is equiva-

lent to minimizing the mean squared cancellation pattarn.
We now ask whether there is a similar pattern minimization that correaponds

to the minimization of the sum of the squares of the weight perturbations relative
to the original weights: ' ' S
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In fact the-e is, and the answer is given in terms of minimizing the mean square

of the convol. tion of the cancellation pattern with another pattern
if :

n
p,{u) = W, e
1 no1 in
and
N .
-Jdnu
p2(u) = ngl Won €

then it is easy to verify by direct substitution that the convolution of Py and Py
defined by

1(u') pz(u - u') du =

T T
1 1 1 ]
IPI*le (u)=-2—;- fp = 57 j‘ pl(u-u)p2(u)du
-1 -7

has the representation
-id_u
= ““n
[p, *pylw) = nz=:1 Wi Wo, € .

Hence, from Eq. (27),

T 2 N
'217 f ‘[pl *p2] (u) du = El lWln w2nl2 * (29)
. n=

-T

It follows by letting Win = AW, and Won= 1/::\n that

law | 2 . A : 2
Zl ( 5 ) =3 f [(p-po)*g](u) du
n= n

-

where

) N 1 -jd_u
glu) = z e "

For in general,

a_ .
n=1 "n
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Thus the minimization of the sum of the squares of the relative weight perturbation
is equivalent to the minimization of the mean square of the convolution of the can-
cellation pattern with the pattern corresponding to element weights equal to the
reciprocals of the amplitudes of the original weights.

N !

\‘!‘\

Note that we can also recast the equivalence of minimizing the sum of the
squares of the total weight perturbations with minimizing the mean squared can-
cellation pattern {Eq. (38)] by letting Win ™ Awn and Won = 1 in Eq. (29) thereby

A

obtaining
N T

Zl |Awn| 2. _2_1%_ f Ii(p -p,) *8) (w2 du (30) ~
n= ;.

where

N -1 fe
g{u) = Z e 1" = —:%——

Nu) g
L (31) o
n=1 sin 7

Hence, minimizing the sum of the squares of the total weight perturbations is o ,/ ‘
equivalent to minimizing the mean square of the convolution of the cancellation ;
pattern with sin (%‘i) /sin( -;- ) The result, Eq. (30), can also be obtained di- ST
rectly from Eq. (28) by noting [as is easily verified using Eq. (31)] that the convolution

of an equispaced linear array pattern with the function sin (E;) /sin( %) is the -

array pattern itself so that

oin (32 =
(p - p)# ———="] (u) = p(u) - p_(u) . :
s'm( -‘2‘-) ° /
e
.,/,( . —

We can now go further and observe that the two sums of squares of weight perturba-
tions,
N N |
. Aw I
2 : lAw |2 and E : -~ n
n a o
n=1 n=1 n \

‘whose minimization in conjunction with placing nulls at a set of specified locations
led to the two forms of cancelling beams treated in this report, are special cases

of a more general weighted sum of squares

N flaw 1\ i -
Z AWn 1 . 2 e
—) ® 7 f lp - p)vel @l du (32)
n=1 n -
-7 .
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where
N Y
-jd u i
gw= Y e ,,
n=1 "n
It is then reasonable to ask whether, given any set of non-zero real coefficients g
¢, We can find the set of perturbations Aw that will result in the nulls at a set of ' ’ p
preacribed locations usuk. k=12, ..., M. and that will minimize \ Ry
N ' : ' \ -
v E Awnl ) /
n=1 ch :
or, equﬁ/alently. minimize
. L 2 \
& [ le-prail au.
-
The condition for nulls in the perturbed pattern at u= L) k=1,2, ..., M, is
0= p(uk) = po(uk) + Ap(uk)
n Y% .
=p (u)+ 2 AW e -
o'k n=1 . ) -
or 1
“3dy Yy
o~ e Awn= - po(uk)n k=1,2, ..., M (33) A 77;’_- .
go that we wish to find the set of weight perturbations Aw;‘ satisfying Eqs. (33) and ‘
minlmlzlng ;
z ('Aw ,/c 2 Y
nzl
The problem can be expre _ed in the form of finding the vector of weight perturba- “3;-~ -
tions . \, )
i .
. T ‘\',//
Aw = (Awl. sz, coss AWN] ‘ ./I .
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" satisfying
Adw=y
and minimizing

ww'c aw

where A is the M X N matrix
-jd,u
e 271

P
-jd. u
e 171

A= .

UL TERL LY

C is the N X N diagonal matrix

and

.“"N“l-

o]

2= =[Py (u) pylugh «evs by )T .

(34)

Using a result from the theory of generalized inverses, 10 the solution is givén by -

Aw = ctal (aclaty!? Y

so that Aw is a 'inear combination of the columns of C'IAY with coefficients from

the vertor

b= aclalyly,
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s0 that

M
2 jdu“m
awy=cp 2 by

m=1

and the perturbed pattern

plu) = p_(u) + A p(u)

where

3
Ap{u) = b
Pl m=1 2

2 -jd_(u-u_)

ees

e e a s e

-5 jd,u
2 I M

d
c: Ji2'm

2 o 'm

T

If the original pattern p o(u) is real as we assumed in Section 2, then the cancellation
pattern must likewise be real. . This is assured by assuming even symmetry of the

weighting coefficients ¢ n with respect to the phase reference center; that is,

h " °N-n+1’

n= 1.2.. XXX N.

Then the cancellation pattern is repreaented as the sum of M real beams, one pointed

at each of the null locations, corresponding to an amplitude taper equal to the square

of the weighting coefficients ¢ ~
special cases of this result.

The two types of beams treated in Section 2 are
Minimum relative weight perturbationas are obtained,

as noted above, by letting ¢ n™ % which gives c:‘; - a: and & representation of
the cancellation pattern in terms of beams corresponding to an amplitude taper equal
to the square of the original taper. Minimum total weight perturbations are obtained
by letting c_ = 1 0 that c: = 1 and the cancellation pattern is represented as the

59

i
f
{

!

—

. ..;:. / -‘_,____‘__‘j_u_‘;_.‘. USSR




. . e s T o E S ———

sum of beams corresponding to a uniform amplitude distribution (that is,

sin (Ezu- ) /sin(% ) beams), We could equally w;ll consider other types of beams.
For example, by letting Cp = Y, we obtain ¢, = 8, 80 that the cancellation
beams are replicas of the orxginal pattern itself,

# decision regarding which type of beams to use for nulling in a particular
situztion must take into account the characteristics of the cancelling beams and
how they affect the rerturbations of the original pattern at points other than the
imposed null locations. We saw in Section 3 that the deviations of the perturbed
pattern from the original pattern at points other than the null locations depend
strongly on the width of the mainlobe and the taper of the sidelobes of the cancelling
beams. Because of the inverse relationship between width of mainlobe and taper of
gidelobes, there is a tradeoff between relatively small perturbations spread out for
a relatively large distance {from the null locations {as with the sin (E;) [sin ( % )
beams), and relatively large perturbations restricted to a relatively small vicinity
of the null locations (as with the beams corresponding tdl a taper proportional to the
square of an already highly tapered element amplitude distribution). 1t is possible
that the relationship established in this section between the type of cancelling beams
and the minimization of the convolution of the cancellation pattern with a pattern
uniquely associated with the type of cancelling beams, c.an be used to help clarify
and quantify this tradeoff between weak, distributed pérturbatlons and strong, localized
perturbations, but more work remains to be done here.’

Although we have so far in this section restricted our attention to combined
amplitude and phase perturbations, the results established here can be extended in
a parallel way to phase-only nulling as well. Equation <32) can be used as the start-
ing point for an analysis of phase-only nulling, with the form of the weight perturba-
tions given by

«

- B

l , .

w BEw -w
All n

on 5
i?,
= Wone - Won EP . o e
jo
=w (e "-1)

on

where ¢_ is the phase perturbation of the n'? weight. For small perturbations,

Lo '
« Y . PR

- A'l_l =1 wonq’n
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8o that the generalized linearized phase-only nulling problem is to determine the
set of $n that satisfy the equation system [similar to Eq. (33)]
N ' ’ ‘ , ,
-jd : ‘
Yoo MR Gw g d=-p(u) k=l ..M (35)
n=1 .
and minimize
N
2 ( 'Iwon| ¢n) .
n=l n
Splitting 'Eq. (35) into its real and imaginary parts we obtain
ngl a ¢, sin d v - wn) = - Po(“k) o | {36a) : )
k=1,2 .... M N ~
. AN
N . . . . . - }
E 8 Ppc08(dpu -y, ) =0 ' . (36_",)

n=1

v
where we have let Won = % © R The phase-only nulling problem can then be

expressed in the form of finding the vector of phase perturbations

¢= [91' P seer ¢N]T

satisfying
iA?. =X
and minimizing
where A is the M X N matrix Bty
a sin(du -y, agein(gu -¥g) ... ,'IV-QN-m(dNuI -y
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C is the N X N diagonal matrix
(a1 Iel)z ]
?

Cs= (azlcz)z

1) (aN/ cN)z

b -

and y is given aa hefore by Eq. (34). Then

- - -1
¢~ctaTwctaT)
80 that ¢ is a linear combination of the columns of c AT with coefticients trom
the vector ’ - v
-1,7,°}
b= (ACT'AT) .
Since ;
- - ;
2 -1 : 2.-1 cw ) o2em1 . ;
cy#, sin(d; u, =y cya, sin(d u, ~y,) ... cy8, "sinld uy, -¥) i
c:a? sin(dyu, - ¥y) cga? sin(dyuy - ¥, oo cga;l sin(dyuy, - ¥,) |
claT. . . . '

e axtain(ayu, - Vi) chay slnldyu, - Wyheo epay "““’u"u""u_’!

it followa that
M

2_-1 ,
9, = caar m“;x by, slnld u, -y ) . L o an {

I the original phases, 'pn' are odd symmetric with respect to the phase reference
center, then even symmetry of the weighting coefficients, ¢ o 88sures that the ’n
are odd symmetric and hence that Eq. (36b) is automatically satisfled, - The two
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special cases treated in Section 2, the minimization of E¢2 and Z(a ¢ )2
correspond to the choice of c, =8, and = 1 respectively, t‘or which Eq. (37)
yields Eq. (19) and Eq. (23).

The can *ellation pattern corresponding to Eq. (37) is

-jd_u
Ap(u) = }: aw e o
n=1
N
i, _ -idu
=n=1w°"(e -1)e ‘
N
-jd_u
= j n;; w°n¢ne n
_ M . N c: { e-jdn(u-um) _e-j[dn(uwm)-z;pm]} .
i e 2

Fory ns dn ugs this gives the approximate representation of the phase-only cancella~
tion pattern as the superposition of M pairs of beams, one member of the pair
directed at a null location, and the other member, of opposite sign, directed at a
location symmetric with respect to the mainlobe of the original pattern.

S. CONCLUSIONS

In this report, we have considered the problem of imposing nulls in the pattern
of a linear array of equispaced, isotropic radiators subject to the condition that the
perturbations of the element weights be minimized. In Section 2 we analyzed four
forms of the problem: (1a) nulls imposed with combined amplitude and phase per-
turbations, minimizing the sum of the squares of the perturbations relative to the
original weights; (1b) nulls imposed with combined amplitude and phase perturbations,
minimizing the sum of the squares of the total weight perturbations; (2a) nulis im-
posediivitih phésé perturbati .ns only, minimizing the sum of the squares of the per-
turbations relative to the original weights; and (2b) nulls imposed with phase
perturbations only, minimizing the sum of the squares of the total weight perturba.
tions. The results are summarized in Table 4. Forms (1a) and (1b) can be solved
exactly for the required weight perturbations, Form (1a) leads to a representation
of the cancellation pattern as a superposition of beams, one directed at each im-
posed null location, each beam corresponding to an element taper proportional to
the square of the origiral \aper; while form (lb) leads to a repreaentaﬂon of the
cancellation pattern as a superposition of beams of the sin ( ) ! sin( 3 ) typea.
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, Forms (2a) and (2b) cannot be solved exactly, but approximate solutions cau be
obtained by assuming that the requirea phase perturbations are small, Minimiza-
tion of the relative weight perturbations is then approximated by the minimizatiou
of the sum of the squares of the phase perturbations, while minimizing the totzl
weight perturbations is approximated by minimizing the sum of the squares of the
products of the phase perturbations with the ampiitudes of the weights, The result-
ing cancellation patterns can then be approximately represented as the sum of pairs
of beams, one pair for each null location, One member of the pair of beams is
directed at the null iocation, while the other, of opposite sign, is directed at the
location symmetric with respect to the direction of the mainlobe axis of the original
pattern. The form of beams is the same as that for the respective combined ampli-
tude and phase perturbatibn problem; that is, beams corresponding to a taper equal
to the square of the original amplitude taper for (2a) and sin ( -l!;-) / sln(-; ) beams
for (2b). ' : . : -

In Section 3 we presented and discussed numerical calculations performed to
display the principal features of the solutions obtained in Section 2. The original
pattern was taken to be that of a 41 element array with half wavelength spacing and
a 40 dB Chebyshev taper. We examined tie patterns obtained with the four methods
of Section 2 for the cases of one imposed null at the peak of a sidelobe, two nulls
imposed symmetrically at the -3 dB points of a sidelobe, two nulls imposed
symmetrically on either side of a null of the original pattern, and two nulls imposed
asymmetrically, one at the peak of a sidelobe and the other at a -3 dB point of the
sidelobe. We gaw that in general the ''tapered' beams corresponding to forms (1a)
and (2a) resulted in larger perturbations of the original pattern in the vicinity of the
imposed null locations and smaller perturbations far away from the imposed nulls
than did the "sinc' beams corresponding to forms (1b) and (2b). This was a conge-
quence of the fact that the ''tapered' beams had wider mainlobes and lower side-
lobes than did the ''sinc'’ beams. Nulling in the phase-only patterns was accom-
panied by an approximately equal and opposite distortion of the original pattern at

T T e e the points symmetric to the liuposed null locations with respect to the axis of the
original pattern mainlobe. As a result, both amplitude-and phase weighting are
required to protuce nulls that are symmetric with respect to the direction of the
mairlobe. - i .

In Section 3 we also discussed the results of calculations performed to examine
cancellation within a sector of the pattern as the width of the sector was increased
by adding equispaced imposed nulls. We sew that the cancellation achieved by the
two comtined-amplitude-and-phase perturbation methods became increasingly
effective as the width of the sector was increased, but that the depth of nulls and
cancellation achieved by the two phase-only methods deteriorated severely as the

.




width of the sector was increzsed. This deterioration of the performance of the
phase-only methods was attributed to the fact that as imposed nulls were added,
interference between the cancelling beams became more pronounced, the required
phase perturbations were larger, and conssquently the small angle approximation
used to derive the phase-only solutions became more and more inaccurate
In Section 4 we considered the problem of finding a pattern minimization that

was equivalent to minimizing the relative weight perturbations, in the same way
that minimizing the mean square cancellation pattern was equivalent to minimizing
the total weight perturbations. We found that there was an equivalent pattern
minimization, namely, minimizing the mean square of the coavolution of the can-
cellation pattern with the pattern corresponding to element weights equal to the
reciprocals of the original amplitudes. We then showed that the types of minimiza-
tion considered in Section 2 w2re special cases of a more general minimizatioa of
the sum of squares of the weig).' perturbations Jivided by arbitrary non-zero real
coefficients—a minimization whiu h had its equivalent counterpart in pattern space
in terms of minimizing the mean square of the convolution of the cancellation
pattern with the pattern corresponding to element weights equal to the dividing
coefficients, We then solved this generalized minimization problem for combined
amplitude and phase perturbations, and for phase-only perturbations.
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Appendix A

Nulling With Minimum Psttern Perturbations

In this appendix we solve the following problem:
Given a linear array of N equispaced isotropic radiators and an initial set of com~
plex element weights, Wont 0= 1,2, ..., N, determine the set of complex weights
W = 1,2, ..., N, which gives the array pattern with nulls at a set of M prea-_?
cribed pattern locations, . k=1,2,..., My M < N, and which differs as little as
possible in the mean sense from the initial pattern. When we use the word "mean"
here we define the interval over which the mean is taken to be the visible region
- -g- =9 = % so that the variable u = kd sin § is to be integrated from -kd to +kd.

The initial pattern po(u) is given in Section 2, as ‘

N . .
-jd_u .
P, (u) = Z Won © n _ R

n=1

and the perturbed pattern p(u) by
N .
-jd_u
p(u) = Z w.e n
n=1

The difference between the patterns is then
-j dn u

N
p(u) - po(u) = nE-:l (wn - won) e
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and the mean square difference between the patterns is

kd . N N
* *
i é‘ Iptu) = p (W€ du = mz:l nz.:l W Y -
-kd
1 3‘! -1 (dn - dm)u du
¢ e
-kd
N N )
®
= xn;l ngl ("m - 'om’ (wn - won) sinc “d'n"' dm) kd)

= (aw'ciaw

where

- -W Wy, = W ]T
AW = {wy = Worr W2 " ¥a2e +c0 N T YoN

= [Awl. sz. eves AwN]T

and

[C]mn = sinc {(d, - d_) kd] = [C]nm .

Note that for half waveléngth spacing, kd = 7 and C becomes the identity matrix so

that
kd

wir § o -p@l? = aw! @w
~kd

N
D lAwnlz .
n=1

The perturbed pattern is required to have nulls at the M locations u = .,

k=1,2, ..., M, so that

N
-jd_u
0=ane ok

n=1
N
-jd u
= 2 w, +Aw ]e D
n=q  on n
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or
ZN: %% k=1,2
~ e Av.n= - po(uk). =12, ..., M.

In matrix form, the equation system for the M nulls is

AAw =y (A2)
where
[ 5jd, u -jd,u -jd_u ;
e 171 e 271 .. e N1
s -jd,u -jd,,u

h e jdlllz o 272 e N2
A= . .
2 -jd, u, -jd,u -jdu
f | e 1°M e 2 M .. e N MJ
|
ff and
1
¢ Y= -(po(ul). Polughs «evs plu ).

The problem then is to find the solution to Eq. (A2) which minimizes (AW)T claw),
Now the quadratic form (Aw)T C(Aw) is positive definite since it represents the
integral of a real power density. Hence, from the theory of generalized inverses’

St eaegen sy v e,

the desired solution is

¥
¥
14

aw ctatactalhy iy, | (A3)

Equation (A3) gives the change in element weights for any spacing of the elements.
For the special case of half-wavelength spacing we have already noted that the
matrix C reduces to the identity matrix. Then

aw = ataah)yly.

f R Y W o S

Hence Aw is a linear combination of the columns of A with coefficients from the
vector 5>_=(AA?)-l Y. But the columns of A are the M vectors
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[ej 1%, ej 2'% ej Nu“) k=12 ... M

so that .
. M
idj vy
Awn = kgl bk e .

This expression for the weight perturbations is identical to Eq. (10) obtained by

requiring ZIAwnI 2 to be a minimum. Of course this conclusion is also an

immediate consequence of Eq. (Al), but it is of interest to obtain it by solving the

minimum pattern perturbation problem with arbit'rary uniform element spacing.
In the case of phase-only element control, half viavelength spacing, and small

phase perturbations, starting with Eq. (A1) we have

kd N
ﬁ‘a { Iptw - p_(u)l? du = Zl law |2
| kd =
‘? i
; = 2 alle m-qf?
' n=1
s 2
N ngl (a“¢n)

[
80 jthat minimizing E(an ¢n)2 is equivalent to minimizing the mean square pattern
perturbation. , ,

! In the above, as mentioned earlier, we have defined the mean with respect to
the visible region of the array pattern. Since the array pattern for an equispaced
linear array is periodic with period 27 in the variable u = kd 8in @, it is also
pois(ble to define the mean with respect to one period of the variable u regardless
of jwhether or not the visible region constitutes one complete period. If this is done,
then the mean square difference between the original and perturbed pattern is

. 4 ] 2 . N =-N . . » 4 '“dn'd Y
¥ 3 f Ipw - po(u)l du= 5 z " “Yom! (Vg = Yon! f e o da
- N m=1 n= o A .
| L - 2 8in [(n ~ m)n]
% mgl El Wn = Wom? (W = Won) n-m
= 2 law,|?
n=1
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so that the sum of the squares of the weight perturbations equals the me: n square
of the cancellation pattern, the mean being taken with respect to a full pe riod of the
variable u = kd sin§ . Thus a least mean square match to an initial elen.cnt ex-
citation is equivalent to a least mean square match over one period of the initial
pattern. In the special case of half wavelength spacing, d = A/2, the period

- #Skdsin @ = 7 coincides with the visible region and Eq. (A4) becomes identical
with q. (A1), When d > A/2, then a match over a full period of the variable u im-
plies a match over an angular sector smaller than the visible region. This how-
ever, is not too serious since the pattern is pericdic outside this sector.
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